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Abstract-This article presents a model for the uni-axial compressive response of uni-directionally
reinforced fibrous composite. The model accounts for the non-linear shear response and the failure
strain of the matrix, incorporating both aspects into a non-linear field equation which governs the
load-deflection process. In addition, the model considers the effects of two kinds of geometric
imperfections, namely, initial fiber waviness and random fiber spacing. It is shown that, under
uni-axial compression, random fiber spacing may instigate the formation of severe transverse
loadings on the fibers. which suggest the existence of a transitional mechanism from micro-buckling
to micro-kinking.

Computational results are presented which illuminate the effects of several material and geo
metric factors on the compressive strength of composites.

1. INTRODUCTION

The compressive behavior of composite materials has been studied extensively during the
past three decades and a review of literature on the subject is beyond the scope of this
paper. Substantial listings of references on the subject can be found in the articles by Shuart
(1985), Camponeschi (1991), Guynn et al. (1992) and Piggott (1993). Suffice it to say that
the compressive response ofcomposites was found to depend on the properties and response
of the constituent materials and on the fiber volume fraction. As may be expected, com
pressive strength is sensitive to imperfections.

The essential novel feature in the present work is the incorporation of random fiber
spacings, as commonly encountered in composites, into a model for their compressive
behavior. The main consequence of the foregoing feature is that it predicts a response which
involves the emergence of highly concentrated lateral forces on the fibers simultaneously
with micro-buckling. These lateral forces are a most likely cause for the development of
kinks. One of the outstanding issues regarding the compressive response of composites is
that the common methodology for predicting compressive failure stems from considerations
of buckling and stability, while most failed specimens exhibit localized kink bands which
span the thicknesses of the test coupons. It seems that all other models address micro
buckling and micro-kinking exclusively ofeach other, and can thus be grouped accordingly.

(I) Models which consider buckling
These include the work of Rosen (1965), which seems to be the first article on com

pressive failure of composites. Considering "shear-mode buckling", that model predicted
a failure stress (JCR = Gm/(I- Va, where Gmis the shear modulus of the matrix and Vr the
fiber volume fraction. That prediction is inadequate for two reasons: (a) it gives (JCR

which is several times higher than experimental values; (b) the relation (JCR - 1/(1- Vr)
contradicts experimental observations which show that (JCR grows linearly with Vr (at least
up to Vf ~ 0.55) [e.g. Piggott and Harris (1980); Morley (1987)].

Several modifications to Rosen's model were introduced subsequently. Primarily, these
modifications considered non-linear shear response of the matrix and initial fiber waviness
[e.g. Wang (1978); Lin and Zhang (1992); Guynn et al. (1992); Highsmith et al. (1992)

t Also at Engineering Technology Division, Oak Ridge National Laboratory, Tennessee, U.S.A.
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Fig. I. (a) A fiber composite modelled as a two dimensional lamellar region consisting of fiber and
matrix plates, (b) a deformed single cell.

and others listed in the aforementioned review articles]. Additional modifications included
the incorporation of fibers' shear-deformation, such as by Davis (1975), or the accounting
for large deformations of the fibers by Yin (1992). Though the latter model stems from a
buckling formulation, it is worth noting that it proposes a criterion for kink formation,
which occurs when fibers' curvature attains a critical value.

(2) Models which consider the a priori existence ofkinks
These include works by Evans and Adler (1978), Hahn and Williams (1986) and

Budiansky and Fleck (1992).
The compressive response of multi-directionally reinforced laminates such as Shuart

(1989), and of cylindrical shells such as Blake and Starbuck (1993), is beyond the scope of
this article. These complex circumstances activate various modes of failure which do not
occur in the uni-directional case considered herein.

In all the above works, the fiber reinforced composites were viewed as lamellar regions
which consist of fiber and matrix layers as shown in Fig. lea). It should be noted that
several investigators (Sadowsky et al., 1967; Hermann et al., 1967; Lanir and Fung, 1972;
Greszczuk, 1975) considered fibers of cylindrical geometry. All those works assumed linear
elastic behavior of fiber and matrix materials.

In addition to random fiber spacing, the current model includes initial fiber waviness
and considers the non-linear shear stress-strain response in the matrix. The fibers are
assumed to deform in accordance with classical beam theory.

2. FORMULATION AND RESULTS

Consider a uni-axially reinforced composite which, following Rosen (1965), is rep
resented by a two-dimensional layered array as shown in Fig. lea). Let x and y denote
Cartesian coordinates in directions parallel and transverse to the layers, and designate by
2h the thickness of a "fiber layer" centered within a composite layer of thickness 2c.
Consequently we have Vr= hlc and VOl = (c-h)/c, where Vr and VOl are fiber and matrix
volume fractions, respective!v
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We focus attention on the "shear mode" of buckling (Rosen, 1965; Garg et al.,
1973), where all fibers buckle in phase. Then, following Rosen's premises (1965) for high
performance composite material systems, we assume that the external compressive load N
is borne entirely by the fiber region, which is modelled as a Bernoulli-Euler beam, while
the matrix responds in shear only. Consequently, we have the following familiar expression
for y~., the shear strain in the matrix:

(1)

In eqn (1), vf denotes the lateral displacement (in the y-direction) of the fiber. In view of
the assumption of Bernoulli-Euler theory, Vf, and thereby also y~, depends only on x.

In addition, we consider a micro-buckling length L and initial fiber waviness v~(x)

with periodicity of 2L. In the sequel, we let v~ (x) = £5 0 cos (nx/L), though this specific choice
is not essential to our method. Finally, in anticipation of the circumstances which emerge
due to non-uniform fiber spacings, we denote by q(x) the distributed lateral load on the
fiber [see Fig. l(b)].

Considering non-linear shear response of the matrix, we write

r~) = G;'F(y~.), (2)

where the function F(y~v) expresses that non-linear shear behavior of the matrix scaled by
the initial shear modulus G;'.

The longitudinal strain in the fiber, e~, under the combined effects of compression and
bending is given by

In eqn (3), uf denotes the fiber displacement in the direction of x.
Consequently, the axial displacement at x = L/2 is given by

f _ _! iL
/
2[(dVf dV~)2 _(dV~)2J ! NL

U'~L/2 - A - 2 0 dx + dx dx dx+ 2 EA'

(3)

(4)

As can be noted from eqns (3) and (4), the hypothesis that fibers deform in-phase implies
that uf and vf are common to all fibers regardless of their spacing. On the other hand, eqns
(1) and (2) state that the support provided by the matrix varies with the fiber volume
fraction Vf • These observations imply the existence oflateralloads, q = q(x), which enforce
a common, in-phase deformation of all fibers in the case of non-uniform spacing. To
emphasize their dependence of the spacing e, we shall write q = q(x, e).

Consider an individual cell of width 2e. The principle of virtual work yields

(5)

Substitution of expressions (1)-(4) into eqn (5) and employment of integrations by parts
yield the following field equation and boundary conditions for each individual cell :

(6)

with
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dv f

-d =0,
X

L
at x = 2' (7)

Note that, in view of the non-linearity ofFin its argument, eqn (6) is a non-linear differential
equation for vI'.

Turning to the case of random fiber spacing, let pee) denote the probability density of
the cell dimension 2e. Obviously

rXp(e) de = l.
Jh

In the present circumstance the principle of virtual work gives

(8)

rx

p(e){J .(T~&~dVf+f T~.bym,,.dvm- r
L2

q(X,e)bddX+NM}de = O. (9)
Jh Vi vm Jo

Furthermore, in the absence of external lateral loads, equilibrium in the direction of y
requires

(10)

Integration-by-parts of eqn (9), upon expressing all variations in terms of b(dvfjdx), gives
the following field equation for vf

:

d 31J IX" d ( I dd') (dV f
dV~)Elf-----:; - 2ep(e)C:-d F -1- -d de+N -d + -d = O.

dx h X VI' X X x
(11)

The boundary conditions for the case of randomly spaced fiber remain the same as those
given in eqns (7).t

It is advantageous to further reduce the order of the differential equation given in eqn
(11) and express it in a non-dimensional form in terms of the following non-dimensional
parameters:

xx=L'
dv f

Y=-d'x
(12)

In addition, the probability distribution function pee) can be converted to a probability
distribution function P(Vr).

In view of expression (12), the non-dimensional form of eqn (II) reads

(13)

where

t In view of eqn (10), it was possible to derive differential eqn (II) which is one order lower than that given
in eqn (6). The lower order eqn (II) enables the determination of the lateral displacement vr to within a rigid
translation, which is of no relevance to the failure mechanisms considered in this work. An additional integration
of expression (II) with respect to x, further reduces the order of the differential equation. leading to a solution
which incorporates an indeterminate rigid body rotation.
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Yo = -ensinnX. (14)

The boundary conditions which accompany the second order non-linear differential eqn
(13) are

dY(I)Y(O) = 0, dX"2 = o.

In the case of uniform fiber spacing, eqn (13) reduces to

d2
y 2 ( Y) 2 2- -(/. (1- Vr)F -1v: +.?c Y= -.?c Yo·

dX2 - r

(15)

(16)

Note that for the linearly elastic case with uniformly spaced fibers, F(Y/(1- Vr»=
Y/(1- Vr) and eqn (16) takes the simple form

with the solution

This corresponds to the buckling load predicted by Rosen (1965), namely .?c 2 = n2 + (/.2.

Note that the above result assumed that the magnitude of the linearly elastic shear strain
in the matrix is not limited by any ultimate or plastic level.

However, if one considers a linearly elastic matrix response followed by an ideally
plastic deformation at y~ = Yp , then plastic yield begins at X = 1/2 and the onset of plastic
deformation is found to occur at

(17)

The above result agrees with the value obtained by Steif (1988) for the slippage initiation
load, beyond which the matrix no longer supports the deformed fibers.

Case 1. Uniformly spacedfibers with bi-linear shear modulus of the matrix
Consider a bi-linear shear stress-strain response of the matrix material, given by the

following expression for F(y~)

{

G;:'(Yxy-YY) +G:yy if Yxy> Yy

G:F(yxy) = G:yxy if -Yy < Yxy < Yr
G;:'(Yxy+Yy)-G:yy if Yxy < -Yy

(18)

In eqn (18), Yy is the strain level where the slope of the bi-linear stress-strain diagram
changes from an initial value G: to the strain hardening value G;:'. It will be shown in this
section that the buckling associated with the response expressed in eqns (18) can be handled
analytically.

For loads that correspond to .?c 2 which exceeds .?c 2(yy ) in eqn (18), the shear response
of the matrix will follow the bi-linear stress-strain relation over a region ~ < X < 1/2, but
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will still remain linearly elastic within the central region 0 < X < e. Obviously e decreases
with increasing ..1 2

• Substitution of expressions (18) into eqn (16) gives

at °< X < e

(19)

where ae and apare defined according to eqn (14) with shear moduli G~ and G;:', respectively,
and

The boundary and continuity conditions associated with eqns (19) are

~;G) = 0, YeO) = 0,
):+ _ dY + dY_

Y(s ) = Y(~), dX(e) = dX(e ), (20)

The above conditions correspond, respectively, to the vanishing of the moment at x = L12,
and of the shear at x = 0, the continuity of shear and moment at x = eL and the requirement
that, by hypothesis, I}'~.I = }'y at x = eL. The five conditions given in eqn (20) determine
the four unknowns associated with the two second order differential equations (19), as well
as the yet unknown location e.

Note that the solution for Y determines the displacement vf to within arbitrary rigid
translations and rotations, which are determined from the requirement of continuity of vf

and dvf/dx at x = eL, as well as vf(O) = 0 and dvf/dx = 0 at x = L12.
The solution to eqns (19) reads:

for 0 < X < e

(21)

for ~ < X < 1/2 and ..1 2 < a;
cos Kp(l- 2X)/2 {anAl . p2 }

Y+(X) = - cosKp(1-2e)/2 Al _n2_a; smne+(1- Vf)}'y- A2 -1X;

(22a)

for~<X< 1/2andJe2>a;

COShKp(1-2X)/2{ anAl . p2 }
Y+(X) = - coshKp(1-2e)/2 A2-n2-a; smne+(l- Vf)}'y- A2-a;

(22b)

In the above equations, Ke = Ja; _..12 and Kp = Jla; _Je2 1·
Equations (21) and (22) match all the conditions (20) except the continuity

d Y/dX(e+) = d Y/dX(e-). The latter condition yields a characteristic equation, upon
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differentiation of eqns (21) and (22), which relates the position of ~ to the load parameter
A. 2 • This characteristic equation must be solved numerically, with the physically meaningful
solution corresponding to the lowest value of A.2 •

In our computations we utilized the constituent properties reported by Guynn et al.
(1992) for AS4/PEEK at 21°e. Accordingly, we took Er = 67 GPa, L = 330 pm and
00 = 1.65 pm and Vr= 0.6. For purposes of comparison we also considered additional
values of Vr in the sequel. The non-linear shear stress-strain response was approximated
by a bi-linear relationship with G': = 1.3 GPa, G;' = 0.33 GPa and Yy = 4.2%.

The resulting stress-deflection curves are shown in Fig. 2 for various values of Vr. The
symbols "+" on those curves correspond to load and displacement values at onset of
departure from linearity in the shear stress-strain response of the matrix. Such departure
occurs when Iy';'y I = yy at X = 1/2. Note that when Vr = 0.9 the composite can carry com
pressive loads which exceed the level which cause departure from linear matrix response.
However, for Vr = 0.3 and Vr = 0.6, the stress-deflection curves exhibit the so called "finite
disturbance buckling behavior" resembling the buckling ofcylindrical shells under uni-axial
compression or spherical shells under external pressure (Simitses, 1976). It is interesting to
note that for Vr= 0.3 and Vr = 0.6 the cusps in the stress-deflection curves, which cor
respond to maximal load levels prior to buckling, occur at magnitudes just above those
which cause ly~1 = yy at X = 1/2. It is obvious that the theoretically predicted cusps for
Vr = 0.3 and 0.6 cannot be realized experimentally. Under load controlled tests the maximal
loads will be followed by total collapse and under displacement controlled circumstances
the specimen would snap through to the lower load levels along the vertical dashed lines
shown in Fig. 2.

Further insight into the compressive response predicted by the solution to eqns (19)
and (20) is provided in Figs 3 and 4. The dimensionless length {({ = 1/2-~) of the regions
where the matrix shear strain ly~1 exceeds the linear elastic limit yy is plotted vs the applied
compressive stress (Fe in Fig. 3 for fiber volume fractions Vr = 0.3, 0.6 and 0.9. Note that
(Fe increases monotonically with {for Vr = 0.9, but decreases (after very slight initial
amplifications) for Vr = 0.3 and 0.6.

The variation of the matrix shear strain y~ with the dimensionless distance X along
the fiber/matrix interfaces is shown in Fig. 4 for Vr = 0.6. The four curves in that figure
correspond to distinct levels of non-dimensional load A.. The top curve, with A. = 23.10
represents typical linear elastic results, with IY~I < Yy for all X and thereby also { = O. In
this case we obtain a sinusoidal variation of y~ which agrees with earlier results (Wang,
1978; Lin and Zhang, 1992), namely y~ = A sin nX with A = anA. 2/[(1- Vr)(A. 2

- n2 _!X2
)].

The foregoing sinusoidal variation persists until the onset of inelastic response at X = 1/2
which occurs at A. = A.y = 30.79. This result is shown by the dashed line in Fig. 4. The
maximal value of the compressive load, associated with A. = A.max = 30.81, corresponds to
an inelastic zone of dimensionless length { = 0.05. In this case the variation of y~, with X,

4000
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-&/L (%)

Fig. 2. The scaled compressive displacement I:1/L at X = 0.5 vs applied compressive stress (T, for
various fiber volume fractions Vr (symbol "+ " corresponds to the circumstance of

ly~(X= ~)I = yy).
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Fig. 4. The variation of the matrix shear strain yO;; vs the non-dimensionalized distance X along the
fiber/matrix interface at several values of non-dimensionalized applied compressive stress A. Fiber
volume fraction V, = 0.6. Onset of departure from linear elastic matrix shear response at

A= AI' = 30.79, maximum compressive stress at A= Ama, = 30.81.

shown by the dotted line in Fig. 4, is no longer sinusoidal. Beyond ( = 0.05, values of A
decrease while AIL increase according to Fig. 2. A typical circumstance, corresponding to
( = 0.1 and A= 30.23, is shown by the solid line in Fig. 4.

Case 2. Non-uniformly spacedfibers
Statistical consideration of cell size distributions. As noted in the Introduction, non

uniformity in fiber spacing introduces a new aspect into the compressive and buckling
behavior of fiber reinforced composites, namely transverse internal lateral loads associated
with the common deformation of the fibers. Following the statistics of spatially distributed
data and the concept of Voronoi cell tessellation, as employed to represent the spatial
distribution of spherical and cylindrical inclusions (Davy and Guild, 1988), we assume a
cumulative distribution function for the cell size 2c described by a Poisson's point process

P(C> c) = exp (-2jlc). (23)

In eqn (23), jl is the frequency of Voronoi cells in a unit length, with a mean cell size of
jl-l. The above consideration is subject to the restriction that fiber regions cannot overlap,
namely c > h ("Gibbs hard core process"). Therefore, eqn (23) is modified to read

P(C> c) = exp [-2jl'(c-h)].

Since jl-l is still the expected value of the Voronoi cell size, namely

(24)
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P(C> c) dc,
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(25)

Equations (23)-(25) can be expressed in terms of the fiber volume fraction Vr, as employed
in eqn (13). Let Vr denote the average ("nominal") value ofthe fiber volume fraction and
2e = Ie 1 the average length of the Voronoi cells, then Vf = hit = 2h/1. Consequently, we
have

Vr
/1' = "2h(l- Vr)

and

Therefore, the cumulative probability that the fiber volume fraction VI' exceeds a value Vr
is

A - [ Vr (1 )JP(Vr > VI') = I-P(C > c) == I-exp - T---P:; V
f
-I .

The probability density distribution which corresponds to eqn (26) is

(26)

(27)

Computational results for p(Vf ) VS Vr are shown in Fig. 5 for three nominal (average)
values of Pr (Vr = 0.3, 0.6 and 0.9).

10-r-----------,

8

6
p(vd

4

2

0.2 0.4 0.6 0.8
Vf

Fig. 5. Distribution oflocal fiber volume fraction for randornly spaced fiber composites with average
fiber volume fraction Vr of 0.3, 0.6 and 0.9.
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The compressive response with randomly spacedfibers
The probability density ft(Vr) given in eqn (27) was incorporated into the formulation

expressed in eqns (11) and (13) and employed to predict the compressive response of
Gr/PEEK (APC-2) composite with Pr = 0.6 at a temperature of T = 21 ne. Based upon the
data of Guynn et al. (1992), the non-linear shear behavior of the PEEK resin was fitted by
a Ramberg-Osgood expression

m ( m )1:"m Tn 'xy

rX) = G~ + A '
e

(28)

where G;:' = 1.3 GPa as in the previous section, A = 94.4 MPa and n = 0.12. In addition,
we took G = tJoL = 1/200 as before and assumed, somewhat arbitrarily, resin failure to
occur at r~. = Yu = 10%. The latter assumption was guided by the observed tensile failure
at 8u ~ 4-5% for PEEK at room temperature reported by Johnston et al. (1991). The shear
stress-strain response considered in the foregoing representation is shown in Fig. 6.

The solution to eqn (13), with YeO) = 0, dY/dX(1/2) = 0 together with eqns (27) and
(28), was obtained numerically. Note that eqn (28) was supplemented by,,;, = 0 for
ly~1 > ru' To implement the numerical solution, the field eqn (13) was expressed by finite
differences as given by Na (1979), and solved iteratively by a quasi-linearization method.

In the above implementation, the probability distribution function of the Voronoi
cells, ft(Vr), was evaluated at one hundred equally spaced, discrete values of Vr varying
between Vf = 0 and Vr = 1.0. With the exception of Figs 12 and 13, all computations were
performed for Pr = 0.6. Further details of the numerical schemes are given in the Appendix.

Upon attaining convergence to a prescribed degree of accuracy, the computational
program gives the values of vr, Y, Y' and y", as well as the shortening of the column A.
Results for the non-dimensionalized lateral deflection L,c/L and for the slope Y vs X are
shown in Figs 7 and 8 for three values of non-dimensional compressive loads ;" namely
A= 10,20 and 26.4. The latter value corresponds to the buckling load, since no equilibrium
configuration could be computed for A > 26.4. The variation of y';" the shear strain in the
matrix, vs the distance X at A= 26.4 is shown by the solid line in Fig. 9. This variation is
contrasted with the variation of r~. vs X for uniformly spaced fibers at the same load level,
as shown by the dashed line, and against the variation of r~. vs X for uniformly spaced
fibers at A= 29.5, which is the maximal load level attained in the uniformly spaced case, as
shown by the dotted line. All the plots in Fig. 9 correspond to Vr = 0.6 (in the case of
random spacing Pr = 0.6 and the results are plotted for the cell with Vr = 0.6).

Substitution of the numerically obtained solution for vr into eqn (6) determines the
lateral load q(x) for each Voronoi cell, as specified by its fiber volume fraction Vr. Results
for q vs the non-dimensional distance X = x/L are shown in Fig. 10 for a typical "matrix
rich" cell, with Vr = 0.25, at load levels corresponding to;, = 10,20 and the buckling value

100

Ii 80
ll.
~

60l&
!

CiS 40"-as
Q)
.c
CJ) 20

2 4 6 8 10 12
Shear Strain (%)

Fig. 6. Shear constitutive relation of PEEK at 21°C based on Guynn's estimation (1992) with shear
failure strain assumed at 10%.
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Fig. 7. Non-dimensionalized deflection, vrlL, vs X for randomly spaced fiber composite with tJr = 0.6,
under compressive loads corresponding to A= 10,20 and 26.4. Failure shear strain Yu is 10%, and

A=' 26.4 is the compressive strength of the composite.
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Fig. 8. Solution Y of the governing equation for randomly spaced fiber composite with tJr = 0.6,
under compressive loads corresponding to A= 10,20 and 26.4. Failure shear strain Yu is 10%, and

A= 26.4 is the compressive strength of the composite.
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Fig. 9. Comparison between the matrix shear strain within the Voronoi cell with Vr = 0.6 in
randomly spaced fiber composite under its failure load A= 26.4 and the matrix shear strain for
uniformly spaced fiber composite under the same load level as well as with its own failure load
A = 29.5. J7r is 0.6 for both cases. RS and US designate randomly and uniformly spaced fiber

composite, respectively.

2529

A = 26.4. Similar plots are shown in Fig. II for a "matrix poor" Voronoi cell, with
Vf 0.95. Note that sufficiently low levels of A, i.e. A= 10, yield small values oflateralload
q, while increasing levels of A raise the magnitude of q. It is especially interesting to note

SAS 31: 18-G
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Fig. 10. Lateral stress q(X) vs X on a Voronoi cell with Vf = 0.25 in randomly spaced fiber
composite with Vf = 0.6 at various levels ofnon-dimensional compressive loads A.. The load A. = 26.4

corresponds to the failure strength of the composite.
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Fig. II. Lateral stress q(X) vs X on a Voronoi cell with Vf = 0.95 in randomly spaced fiber
composite with Vr = 0.6 at various levels of non-dimensional compressive loads A. The load A. = 26.4

corresponds to the failure strength of the composite.

the "spikes" in the plots of q vs X. These localized amplifications occur at places where
Y~y attains its ultimate value Yu at some Voronoi cells, with the sharpest spike located near
the place where IY~I = Yu at the Voronoi cell under consideration. For instance, the spikes
in q(X) for), = 20 in Fig. 10 occur at X = 0.15 and X = 0.3, which are the locations where
IY~.I = Yu atthe Voronoi cells of fiber volume fractions Vf = 0.99 and Vf = 0.98, respectively,
at ). = 20. (Obviously, the matrix material in those cells failed over the ranges of
0.15 < X < 0.5 and 0.3 < X < 0.5, respectively.) On the other hand, the sharp spike at
X = 0.25 for A = 26.4 in Fig. 11 is associated with Y~y attaining its ultimate value Yu within
the very same Voronoi cell (with Vf = 0.95) considered in that figure, while the remaining
peaks are associated with shear failures in other cells. Peaks which occur at locations
X < 0.25 are due to failures in cells with values of Vf > 0.95, while spikes located at X> 0.25
are due to failures within more resin-rich Voronoi cells.t

Comparison between Figs 10 and 11 shows that resin-rich Voronoi cells are subjected
to relatively lower lateral loads. This observation is attributable to the fact that the above
mentioned cells sustain shear strains y~ of comparatively smaller magnitudes.

Predicted axial stress-axial strain relations and compressive strengths under mono
tonically increasing compressive loads are illustrated in Fig. 12 for various values of Vf •

The continuous lines, terminating at points which corresponds to failure, correspond to
uniformly spaced fibers, while symbols represent computational results for the case of

t It may seem that lateral equilibrium is not satisfied for the individual Voronoi cells since JA/2 q(X) dX '# 0
in the plots shown in Figs 10 and II. However, due to symmetry about X = 0 and X = 0.5, nq(X) dX indeed
vanishes.
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Fig. 12. Dimensionless displacement -filL at X = 0.5 vs applied compressive stress. Solid lines are
for uniformly spaced fiber composite. Symbols are for randomly spaced fiber composite. The ends
of lines and the filled symbols indicate compressive failure strength for uniform and random

spacings, respectively.

randomly spaced Voronoi cells with filled symbols representing failure. The stress-strain
responses shown in Fig. 12 are dominated by the last term on the right side of eqn (4) and
thus remain nearly linear until failure. In Fig. 13, predicted levels of compressive strength
are plotted vs fiber volume fraction, Vr, for uniformly and randomly spaced fibers. Note
that random spacings yield lower values of compressive strength and suggest a linear
relation between strength and Vr, which is in agreement with experimentally observed
trends by Piggott and Harris (1980).

Figures 14{a,b) exhibit plots of fiber curvatures versus non-dimensional distance X at
various levels of non-dimensional compressive load A. Note the significant increase in
curvature for the randomly spaced case [Figure 14{b)], as compared with the uniformly
spaced case [Figure 14{a)]. If, according to Yin (l992), kinks occur when fibers' curvature
attains a critical value, then Figs 14{a,b) suggest that random spacing yield kinks at lower
load levels.

Unlike the circumstance of uniformly spaced fibers with bi-linear shear response of
the matrix, the computational scheme for randomly spaced fibers cannot be extended to
predict post-buckling behavior such as shown in Fig. 2. The specific values of the computed
compressive failure stresses are listed in Table I. Table I exhibits the effects of the nominal
volume fraction Vr, the amplitude of geometric imperfection tJolL, and the presence or
absence of an ultimate value of matrix shear strain Yu' Table 1 also illuminates the effect of
random fiber spacing.
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Fig. 13. Compressive strengths of uniformly and randomly spaced fiber composites vs fiber volume
fraction.
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Fig. 14, Pre-buckling curvature of fiber layer in the case of (a) uniformly spaced fiber composite
and (b) randomly spaced fiber composite. [n both cases Vf = 0.6.

3. CONCLUDING REMARKS

This article presented a mechanics model for the compressive response and failure of
uni-directionally reinforced polymeric composites loaded parallel to the fiber direction. The
model accounted for the non-linear shear response of the resin, including its ultimate shear
strain, and incorporated two kinds ofgeometric imperfections, namely, initial fiber waviness
and random fiber spacings. Heretofore, the latter kind of imperfection has not been con
sidered elsewhere.

The non-linear response of the matrix was accounted for by means of the non-linear
field eqn (6) for the lateral displacement tr In general, the above equation could be solved

Table I. Comparison of failure strength (MPa)

Uniform spacing Random spacing
~7 oolL Yu = 00 1'" =0.1 1'u = 00 Y'" "" 0.1f

--~-, --'.,,,.,_..,,-----
0.0025 1360 1360 1381 1292

0.3 0.0050 1103 1103 1116 1029
0.0075 941 941 947 867

0.0025 2023 2023 2144 1746
0.6 0.0050 1541 1541 1583 1234

0.0075 1253 1253 1281 969

0.0025 4228 4228 4228 2927
0.9 0.0050 2702 2702 2685 1700

0.0075 2023 2023 2023 1194
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numerically up to failure. Nevertheless, in some special circumstances, it was possible to
generate a solution into the post-buckling range.

Both kinds ofgeometric imperfections, initial fiber waviness and random fiber spacings,
were shown to substantially reduce the compressive strength of the composite. However,
random fiber spacings, when combined with the foregoing non-linear shear response of the
matrix, was shown to introduce imbalances in the support furnished by the matrix against
fiber micro-buckling, resulting in highly localized internal transverse loads on the fibers.
The emergence of these transverse loads alludes to the possibility of transition from micro
buckling to micro-kinking of the deformed fibers. However, it is impossible to explore this
matter any further within the context of the Bernoulli-Euler beam theory utilized in the
present article since this theory cannot account for discontinuous shear deformations within
the fibers. Such discontinuities are likely to occur at locations where the matrix reaches its
ultimate strength and ceases to support the fibers, and the highly concentrated transverse
loads predicted by the present analysis reflect the indeterminacy inherent in the Bernoulli
Euler theory in addressing shear response.

A remedy to the above inadequacy may be found by employing shear-deformation
models, such as the Timoshenko beam theory, to represent the response of the fibers. This
approach was employed recently by Chung and Weitsman (1993), where it was shown that
random fiber spacing indeed causes discontinuities in the shear strains within the fibers.
These discontinuities indicate the emergence of kinks.
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APPENDIX: THE NUMERICAL SCHEME

The non-linear second order differential eqn (13) can be expressed as

Y" = Q(X, Y)

where the prime denotes derivatives with respect to X, and

An error quantity at ith iteration step is defined as

</>1') = y"(il _ Q(X, yli).

Consequently, upon employing a Taylor series expansion, the subsequent error quantity is given by

Noting that

(~</>y)I') = _ (~Qy)(i) ( o</> )(il
u u and 0Y" = I,

we obtain, upon imposing </>1'1 = </>(i+ II = 0 in eqn (A2),

y"(i+II_(OQ)I'1 y(i+11 = Q(X y(i)_(OQ)I'1 y(il.oY , oY

(AI)

(A2)

(A3)

Expression (A3) is a linear ordinary differential equation for y(i+ II involving the known results of the previous
iteration yin Note that the derivative of Q with respect to Y is

Furthermore, upon employment of the Ramberg-Osgood model, we have

F'=-------
Gm

1+ -'- (r,:;.)(I-nl/n
A'/nn

Obviously, the boundary conditions in eqn (15) must be satisfied in every iteration step.
The linear differential eqn (A3) is solved by a finite difference scheme as follows. Divide the abscissa 0 < X < I

into N equal intervals of length h = liN. Then at each node, X = Xn = nh, the second derivative Y" is expressed
as

Using the above relation, eqn (A3) can be converted to an algebraic equation of the form
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Here,

b(l+l) = _h1 (OQ)(i) -2
n oY n

2535

(A4)

The boundary conditions in finite difference scheme are yg+ II 0 and y~~111

The system of eqns (A4) can be represented as

where

o

Y
(,+I)
N-I'

(AS)

o 2

Equation (AS) can be solved by means of the LU decomposition (Na, 1979). Accordingly, the matrix A(i+11 is
decomposed into the product A(i+ I) = Vi+I)U(i+ I). Here,

and

o

o

, UU+l) =

R(i+ll
PN-l

2

fJ~i+l)1'~i+l) = 1 (n = 1,2 ... N-l)

o

y\'+I) o

Y
(i+l)
lV-I

Denoting

zU+ 1) = UU+l)Y(i+I), (A6)

eqn (AS) is transformed to V i+ llZ(i+ I) = S(i+ I>, where the components of Zli+ I) are computed by

The recursive relations between z~+ II and y~+ I) are obtained from eqn (A6) as
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y~'+I) = Z~'+I)_y~i+l)y~:,') (n = N-l,N-2 ... 1).

The values of y~+ I) express the solution to eqn (13) at the (i+ l)th iterative step. When

NI ly~'+I)_y~)12

n=J

attains a constant value within a prescribed tolerance, the iteration is halted and post-processed to compute
deflection, shear strain and stress, lateral stress and other quantities.


